. Q. f. (a) State and explain Birge-Vieta method.

(b) Seive by Newton Raphson method

328312 (14)

BE (3rd Semester) Examination, Nov-Dec 2021

Branch : EEE, Et & T

NUMERICAL ANALYSIS

Time Allowed : Three Hours

Maximum Marks : 80

Minimum Pass Marks : 28

Note : Part (a) of each question is compulsory, attempt

any two parts from (b), (c) and (d). Part (a)

carries 2 marks. Part (b), (c) and (d) 7 marks

P.T.O.

Q. 2. (a) Explain Gauss elimination methodae

Q. 1. (a) State and explain Birge-Vieta method.

(b) Solve by Newton Raphson method

$$x^3 - 3x + 1 = 0$$

(c) Find a real root of the equation $x^3 - 11x^2 +$

32x - 22 = 0 by Birge Vieta method correct

to four decimal place using the initial

HARS- OF SUNGSH

approximation p = .5

(d) Find a real root of the equation $x^3 - 9x + 1 = 0$

by the method of false position.

Q. 2. (a) Explain Gauss elimination method.

(b) Solve the following system of equation by the

method of triangularisation :

x + 5y + z = 142x + y + 3z = 13

3x + y + 4z = 17

(c) Solve the following system of equation of

Gauss-seidal method correct to four decimal

eich Chinosomi? brit eich lebiosogsi'T () yd places

28x + 4y - z = 32

x + 3y + 10z = 24

2x + 17y + 4z = 35

328312 (14)

P.T.O.

(d) Use Jacobi method and solve system of

6x + 3y + 12z = 358x - 3y + 2z = 204x + 11y - z = 33

Q. 3. (a) State and explain Simpson 1/3 rule.

(c) Solve the following distant of requation of

(b) Calculate approximate value of $\int_0^{\pi/2} \sin x \, dx$

by (i) Trapezoidal rule and Simpson 1/3 rule.

(c) Give that :

x	1	1.2	1.4	1.6	1.8	2.0
у	0	.128	.544	1.296	2.432	4.0

Find the first derivative of y at x = 1.2 and 2.0.

(d) Find the missing value in the following table.

x	0	5	10	15	20	25
у	6	10	0 <u>=</u> x	17	= \/_	31

Q. 4. (a) State and explain Picard's method.

(b) Use Picard's method to approximate y when

(d) Use Runge-Kutta method to solve

x = .2 given that

$$y = 1$$
 when $x = 0$ and

$$\frac{dy}{dx} = x - y$$

OR

(b) Solve $\frac{dy}{dx} = x + y^2$, y(0) = 1 using Taylor's

series method and compute y(0.1) and

P.T.O.

y(0.2).

(c) Given
$$\frac{dy}{dx} = \frac{y - x}{y + x}$$
 with the initial condition

y = 1 and x = 0. Find y for x = .1 by Euler's

method.

(d) Use Runge-Kutta method to solve
$$\frac{dy}{dx} = xy$$

for x = 1.4 initially x = 1, y = 2 (take h = .2)

Q. 5. (a) Explain method of least square.

(b) Fit a second degree parabolic to the following

data :

х	1	1.5	2.0	2.5	3.0	3.5	4.0
у	1.1	1.3	1.6	2.0	2.7	3.4	4.1

(c) Using the principle of least square fit an

equation of the form $y = ae^{bx}$ to the given

data :

x	1	2	3	4
у	1.65	2.70	4.50	7.35

(d) Predict y at x = 3.75 by fitting a power curve

 $y = ax^b$ to the given data :

x	1	2	3	4	5	6
у	2.98	4.26	5.21	6.10	6.80	7.5