Printed Pages - 7

porlem foartgeh notweh vd svioá, (d)

328312 (14)
 BE ($3^{\text {rd }}$ Semester)
 Examination, Nov-Dec 2021
 Branch : EEE, Et \& T
 NUMERICAL ANALYSIS

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : Part (a) of each question is compulsory, attempt

```
any two parts from (b), (c) and (d). Part (a)
carries 2 marks. Part (b), (c) and (d) 7 marks
```

each

(2)

Q. 1. (a) State and explain Birge-Vieta method.
(b) Solve by Newton Raphson method

$$
x^{3}-3 x+1=0
$$

(c) Find a real root of the equation $x^{3}-11 x^{2}+$
$32 x-22=0$ by Birge Vieta method correct
to four decimal place using the initial
approximation $p=.5$
(d) Find a real root of the equation $x^{3}-9 x+1=0$
by the method of false position.
Q. 2. (a) Explain Gauss elimination method.

328312 (14)

(b) Solve the following system of equation by the
method of triangularisation:

$$
\begin{aligned}
& x+5 y+z=14 \\
& 2 x+y+3 z=13 \\
& 3 x+y+4 z=17
\end{aligned}
$$

(c) Solve the following system of equation of

Gauss-seidal method correct to four decimal places

$$
\begin{aligned}
& 28 x+4 y-z=32 \\
& x+3 y+10 z=24 \\
& 2 x+17 y+4 z=35
\end{aligned}
$$

(d) Use Jacobi method and solve system of equations

$$
\begin{aligned}
& 6 x+3 y+12 z=35 \\
& 8 x-3 y+2 z=20 \\
& 4 x+11 y-z=33
\end{aligned}
$$

Q. 3. (a) State and explain Simpson $1 / 3$ rule.
(b) Calculate approximate value of $\int_{0}^{\pi / 2} \sin \mathrm{x} d \mathrm{x}$
by (i) Trapezoidal rule and Simpson $1 / 3$ rule.
(c) Give that:

x	1	1.2	1.4	1.6	1.8	2.0
y	0	.128	.544	1.296	2.432	4.0

Find the first derivative of y at $\mathrm{x}=1.2$ and 2.0.
(d) Find the missing value in the following table.

x	0	5	10	15	20	25
y	6	10	-	17	-	31

Q. 4. (a) State and explain Picard's method.
(b) Use Picard's method to approximate y when
$x=.2$ given that
$y=1$ when $x=0$ and
$\frac{d y}{d x}=x-y$

OR
(b) Solve $\frac{d y}{d x}=x+y^{2}, y(0)=1$ using Taylor's
series method and compute $y(0.1)$ and
$y(0.2)$.
(c) Given $\frac{d y}{d x}=\frac{y-x}{y+x}$ with the initial condition

$$
y=1 \text { and } x=0 . \text { Find } y \text { for } x=.1 \text { by Euler's }
$$

method.
(d) Use Runge-Kutta method to solve $\frac{d y}{d x}=x y$

$$
\text { for } x=1.4 \text { initially } x=1, y=2 \text { (take } h=.2)
$$

Q. 5. (a) Explain method of least square.
(b) Fit a second degree parabolic to the following
data :

x	1	1.5	2.0	2.5	3.0	3.5	4.0
y	1.1	1.3	1.6	2.0	2.7	3.4	4.1

328312 (14)
(c) Using the principle of least square fit an
equation of the form $y=a e^{b x}$ to the given
data :

x	1	2	3	4
y	1.65	2.70	4.50	7.35

(d) Predict y at $x=3.75$ by fitting a power curve

$$
y=a x^{b} \text { to the given data: }
$$

x	1	2	3	4	5	6
y	2.98	4.26	5.21	6.10	6.80	7.5

